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Expert systems and the abductive circle

G. LUGER & C. STERN (Albuquerque)

0. Abstract

The current generation of expert systems is becoming more and more
successful at functioning in a collaborative role with human users in abduc-
tive problem solving. We first show how these systems implement a symbol
processing architecture which allows for a cyclical pattern of description,
explanation, and action. We next analyze the structure of abductive prob-
lem solving and evaluate the ability of current expert systems to engage in
a semiotic interpretation of evidence. We show where epistemological
understanding has not kept pace with expert system problem solving
practice. Finally, we argue that a new epistemology, based on a clearer
understanding of abductive problem solving, could provide a basis for
integrating many of the tools now emerging from areas of Al research.

1. Introduction

Expert systems problem solving was one of the first AL technologies to
migrate on a large scale from the research environment to a commercial
setting. An important part of the widespread use and success of expert
systems has been their adaptability to many problem solving contexts. This
adaptability has involved the integration of a variety of knowledge represen-
tation and reasoning techniques.

In the section 1.1 we trace the roots of A.L. programming techniques in
structuralist models of problem solving. We examine exploratory program-
ming, proof trees and rules stacks, and show how these tools have been
used to describe and explain the problem solving process. We then show
how much of the versatility of expert systems derives from the robustness
of these original techniques. In section 1.2 we point out many of the current

limitations of expert systems, including brittleness, and lack of meta-level
integration, and the inability to model common sense.
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Insection 2 we analyze abductive problem solving, describing an architec-
ture which includes interwoven elements of description, explanation and
intervention. We give an example from our own expert system development
work of abductive problem solving in the area of discrete semiconductor
failure analysis.

Finally, in section 3, we propose an epistemological foundation for
current expert systems practice that offers a possibility of extending their
semiotic sophistication.

1.1 Expert systems: a "use driven" technology

Seymour Papert in the mid-1960s described for the computing and educa-
tion communities what has come to be referred to as "exploratory program-
ming". Papert exemplified this approach with his LOGO language coupled
with the use of "turtle graphics" and an interactive programming environ-
ment. Papert first proposed this methodology as part of a theory of educa-
tion where a program actively represented a student’s reasoning process
in a particular situation and the computer’s interpretation of the student’s
code allowed the student to comprehend problems, called "bugs," in his or
her thought process (Papert, 1980). Figure 1shows a student’s code /thought
of a tree with the computer’s interpretation demonstrating "bugs" in the
thought process. Progressive refinement of the tree code, first adding a
recursive termination condition, and then creating a "procedure invariance"
so that the turtle ends each recursive call having the same orientation with
which it started, finally produces the intended result.

Papert’s ideas are built on the Piagetian (structuralist) paradigm in
psychology, where humans learn new relationships in their world through
a process of accommodation to discrepancies in the structures of their
current understanding. In this "genetic epistemology" new invariances
constantly update and replace current limited (buggy) understandings of
situations. Papert translated these ideas into a computational environment
and they subsequently became an important aspect of the artificial intel-
ligence and expert systems programming methodology.

Expert systems designers use exploratory programming under several
guises, but most importantly in exploring the problem space and in develop-
ing the early prototype. We explore the problem space of an application
to determine the salient features for a program design. These features

— mightinclude the choice of data or goal driven inferencing, of breadth,
depth of best first search strategies, or representation through decision
trees, rule systems, objects or some hybrid combination. Throughout this
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process we seek to align the computer’s interpretive process with that of
the human expert interpreting the phenomena of the problem situation.

a0 T

Original Pirst Second Succesful

Figure Attempt Attempt Program
TO TREE :SIZE TO TREE :SIZE TO TREE :SIZE
FD :SIZE IF :SIZE<2 [STOP] IF :SIZE<2 [STOP]
LT 20 FD :SIZE FD :SIZE
TREE :SIZE/2 LT 20 LT 20
RT 40 TREE :SIZE/f2 TREE :SIZE/2
TREE :SIZE/2 RT 40 LT 20
END TREE :SIZE/f2 BK :SIZE

END END
Figure 1: The progressive refinement method used to develop the computer

code for drawing a tree

Once the base representation and search strategies are selected the
expert system designer begins to fashion the rules or knowledge structures
of the particular application. In developing the early prototype the A.L
programmer attempts to fashion a knowledge base reflective of the expert’s
interpretation of the application. In this situation it is perfectly acceptable
to say, "Even though I don’t know the full details of what I am doing, let
me explore with a few ideas..." Through this progressive refinement model,
the computer’s interpretation, directly reflecting the programmer’s evolving
understanding of the domain, gradually comes to capture the understanding
and interpretative skills of the human expert working in that application
area.

Exploratory programming has come to be one of the designer’s most
important tools. John McDermott, in reflecting on his preliminary work and

successes in building the computer configuration program, XCON, at
Digital (McDermott 1981; McDermott & Bachant, 1984) insists that the
exploratory programming methodology made his program possible, whereas
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two previous attempts by Digital, not using a very high level language and
the exploratory methodology, had failed at the task.

We include as Figure 2 a flow chart describing the exploratory program-
ming model. There are two important features: first, try an idea and see
if it works, in particular "watch where it fails", and revise (the code repre-
senting) your idea accordingly.

Begin

i Define Problerns and Goals |

!

Design and
Construct Prototype

Shortcomings

no ) Rebulld
System

» Final
Evaluation
passed

Figure 2: The explanatory development cycle for rule based expert systems

Ready for
Final
Evaluation?

—thereeeﬂdie&ture%ene&th&de&gn&haswoﬂcedthmughiheihought—
process until the application is understood, be ready to scrap the rule or
object design that resulted from the exploratory mode, and rewrite it from
the beginning to reflect directly the new understandmg of the problem
situation. When McDermott did this with an early version of the XCON
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program he found that he could build a program of identical competencies
with one third fewer rules, from 750 down to 500 (McDermott, 1981).

An important A.L tool to assist in the exploratory approach is a powerful
user interface design. With the object-oriented interface first seen in Inter-
lisp and the Smalltalk world at Xerox PARC, and later reflected in the
Flavors environment at MIT, active tracing and debugging tools have
became a part of the expert system designer’s tool kit. Besides offering an
important assist in removing syntactical miscues, the interface allows the
designer to oversee the computer’s interpretive process. With the assistance
of a sophisticated interface, the program designer is able to view failure
within the context of the interpretive process.

The exploratory programming methodology, combined with the rule or
object centered data structure, makes it possible for the program designer
to view an appropriately grained analysis of miscues. This allows the pro-
grammer to see misconceptions in the context where they occur. A proof
tree or rule stack gives the exact location in the computer’s interpretative
process of the programmer’s misconception. This means, of course, that the
program designer is dealing not just with some abstract mistake (array
variable out of bounds, stack underflow) but a conceptual mistake in the
context of an interpretation (this disk drive requires two controllers and
there are no such devices available).

o

Inference
Module
7
Cl = Al
C2 = A2
C3 = A3
Working =
Memory =
Pattern Pattern =  Action
b
=)
Ch = An
7§
Figure 3: The production system architecture. The inference module takes

patterns from working memory to the rule set and returns revised
patterns
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To make this notion of "interpretive context" for rule debugging clear,
we offer a simple example. Using a expert system controller such as the
traditional production system, rule based inferencing exactly reflects pro-
gress through an and/or graph, and that graph gives the context for each
rule as it is interpreted. Figure 3 presents a diagram of the production
system model of computing with its traditional division of logic (the
encoded rules of expertise) from inference engine. The inference module
goes to the rule base with the context of the information in working mem-
ory to match a production rule and generate another step in the search
process.

The rule stack, as part of working memory, reflects the progress through
the graph of possible solutions. With each successful rule invocation, that
rule is placed on the stack. Thus, if the user is asked a question (does the
probe light register positive?) the program can present the rule as the
justification as to why the question was asked (because if the probe light
registers positive and ... then the fault is in ...). If and when a rule later fails
to be part of a successful solution path, it is popped off the rule stack. Thus
the stack reflects both the chaining of rules together and the context of any
particular interpretation. A reflection of the rule stack as progress through
a graph is given as figure 4.

" GOAL

proof tree

. - for goal “foo”

rule stack is [r10, 19, 18, r1 ] for

progress-to-state-W

Figure 4: Proof tree that reflects reasoning
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The result of any solution, or even partial solution in the problem is
reflected in a proof tree. A proof tree is that portion of the graph, along
with the path through its states, that captures the completed reasoning
process in the problem or subproblem. When the program designer and
later the user asks the system "How did you come up with this particular
result?," the program responds with the proof tree that reflects its reasoning
in that situation. This situation is captured in Figure 4, where the user has
asked the program how it knows "foo" is true. The encircled portion of the
graph is the system’s response.

Two important points can be made from the analysis of the proof tree
and rule stack concepts: First, in exploratory programming mode, the
designer or programmer has an interpretive context for understanding her
misconceptions or bugs. Her mistakes are made in a context, and interpre-
ting and correcting them is a conceptual accommodation (in the full genetic
epistemological sense) to the world as it is. The second point is that the
eventual expert system user is also always problem solving in a context.
Accompanied by a rule stack with solutions reflected in proof trees, in-
ference rules and explanations are fundamentally linked to a focus or
context, that is, they are interpretations.

The explanation/justification powers of the expert system methodology
are a hallmark of this genre of programs: if the justification of decisions
in the search process is not available, the program is not an expert system.
As we see in subsequent sections explanations are also an essential part of
human communication, and even more mature justifications will be part
of our description of the abductive circle: requirements for a symbol system
to achieve semiosis.

Current research in expert systems is attempting to address difficult
problems, such as the design of intelligent editors to help, by automation
of the process, the human domain expert interact with the expert system
program in debugging the knowledge base. The Teiresias work at Stanford
(Davis, 1982; Davis & Lenat, 1982) shows us an example. A "metatheory"
of the MYCIN rule base was built for the domain expert to reason about
the objects (rules and facts) in the MYCIN knowledge base. Using
"schemas" the Stanford researchers built explicit models of classes of rules.
These schemas contained information on how to create new instances of
a class of objects, how information about a set of rules is to be obtained,
how certain infections can enter the system, and so on. In the dialogue
below, when the doctor attempts to enter a new rule in the knowledge base,
Teiresias is able to "understand" it, attempt to enter it into a class of

already existing rules, and to determine why the rule is not appropriate.

T: Is there a rule missing?
D: Yes
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T: Would you like to give me such a rule now?
D: Yes.
If 1. The patient’s infection is primary-bacteremia
2. The site is one of the sterile sights
Then There is suggestive evidence (.8) that the category is enterobacteriacae.

(Teiresias parses this rule into its internal representation and then presents it again so the
expert can check it. After the expert agrees, Teiresias attempts to integrate this new rule
into the knowledge base....)

T: I hate to criticize, Dr Davis, but did you know that most rules about what the
category of an organism might be that mention the site of a culture, and the infec-
tion also mention the portal of entry of the organism? Shall I try to write a clause
to account for this?

D: Yes
T: How about:

The portal of entry is gastrointestinal, OK?
D: Yes

The proof tree and rule stack are also used by Teiresias, as one would
expect, in the debugging process. Teiresias asks the user if a particular rule
stack or proof tree justification are appropriate in a situation, Teiresias is
in effect asking the human doctors if their interpretation is the same as
MYCIN’s interpretation of a particular medical situation! Teiresias also
provides a "meta-meta" level where new schemas, for new classes of rules
can be created.

In spite of this growth and widespread adoption of the expert systems
methodology, there has been no unifying computational epistemology that
has kept pace with these evolutionary developments. The theoretical
understanding of expert system problem solving has remained rooted in the
denotational semantics of Tarski and the deductive model of human pro-
blem solving.

Even the so called "uncertain" reasoning systems, using techniques such
as the Stanford Certainty Factor Algebra (Buchanan & Shortliffe, 1984) and
Zadeh’s fuzzy set theory (Zadeh, 1983; Luger & Stubblefield, 1989), are
seen as weak deductive methods rather than as genuine instances of an
inference process. Many expert systems technologists, with their rationalist
origins, seem comfortable only with deductive inference. Sound inference
schemes may make good mathematical theorem provers but they make
little psychological sense. We believe that these and other problem solving
processes which expert systems use are by and large abductive in nature.

blem solving requires a more sophisticated account of the functioning of
symbol systems and the role of interpretation.
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In this context we will define the abductive circle. Roughly, this term
refers to the linkage of description, explanation, and action within the
context of abductive problern solving. We believe that the need for expert
systems to capture this dimension of problem solving in humans has motiva-
ted the incorporation of features that support abductive problem solving.
We will propose a theoretical account of abduction which we believe will
provide direction for the future evolution of expert system technology.
Before we do this we will briefly mention several of the current limitations
of the expert or knowledge based technology.

1.2 Current limitations of the expert systems technology

Despite their successes, expert systems are still subject to a number of
fundamental limitations. We see these limitations as a reflection of the
semiotic poverty of our current knowledge representation and reasoning
techniques. We enumerate several of these limitations before continuing
with our definition of abductive circularity.

Brittleness: This correlates with simplistic sharp-edged concept modeling.
Brittleness comes from two aspects of the current technology. First, a
Tarskian semantics that maps elements of a symbol system onto items "in
the world." We feel this simplistic mathematical approach to a semantic
model is fundamentally flawed, as we discuss in subsequent sections. Se-
cond, the matching algorithms in expert systems, so crucial for chaining
rules as well as matching rules to descriptions of the world, are performed
by simplistic, context independent techniques such as unification (Luger &
Stubblefield, 1989). Matching is never within a context that could support
near (syntactic) misses, alternative (equivalent) descriptions, or any guidan-
ce based on deeper (semantic) understanding.

Shallow versus deep reasoning: The "shallowness" of a problem specifica-
tion is sometimes related to surface or descriptive, rather than deep,
explanatory, or semantic representations. In MYCIN, for example, medical
situations are often described by temperature levels and presence of nausea
and headaches, rather than explained through a theory of bacterial infecting
agents. The failure to produce a solution with the shallow model is some-
times responded to by model-based reasoning (Iwasaki, 1989). Transfer
between different levels of reasoning remains an unsolved problem due to
the lack of semantic cohesion between the representational levels (Skinner
& Luger, 1991)

Weak explanation facilities: This is related to the previous point. The best
expert systems currently produce explanations which are built from literal
statements of rules from the rule stack or rebuilt into proof trees. Explana-
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tion in humans is a much richer process, often including deeper clues to
the "intervention process" and the eventual problem solution. For example,
human explanations often include contexts for switching between shallow
and deep reasoning models (Skinner & Luger, 1991).

Lack of (semantic) metalevel integration: Rule based expert systems, or
even rule sets attached to object based specifications are little more than
a loosely coupled collection of information. We refer to this as the "wood-
pile" model of skill representation: when you want to encode a new skill
just write it in an if.. then.. format and throw it into the pile of other rules.
Rules can be modular and "additive" to the point of absurdity. What is
desired is (at the minimum) more metalev = coherence. The exception to
this approach, and important data points in meta level modeling are the
Metadendral and Teiresias research (Lindsay et al., 1980; Buchanan, 1984).

Common sense: Common sense in human problem solvers functions in
background to support flexibility of expertise. We don’t know how to model
this background knowledge very well. This skill is related to our embodi-
ment in the world and our repository of basic motor and coping skills
(Winograd & Flores, 1986). We discuss these ideas further in subsequent
sections.

Difficulty in paradigm selection for expert reasoning systems: At the present
time there does not exist a mechanism under which we can decide which
problems or classes of problems will be amenable to the expert systems
approach. In many cases the way to deal with this decision is to engage in
exploratory programming, a semiotic exploration of the problem solving
space.

Lack of learning potential: The present generation of knowledge based
systems lacks even rudimentary potential to automatically integrate new
information, even that from successful runs, into its knowledge base. Cur-
rent research in model and case based reasoning offer hope in this regard.

The account of abduction offered in this paper we believe will show both
the sources of these limitations and a means for addressing and overcoming
them.

2. Expert problem solving and abduction

2.1 Introduction
—Experﬁsys&mmampmﬁeﬁymbeﬁﬂepfeseﬂt&&enﬂﬁeﬁeempm%em—;

are symbolic in two senses. First, they manipulate non-numeric symbols
representing qualitative properties and relationships. Second, it is intended
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that these symbols have the same internal or computational semantics as
that attributed to them by the human user.

In order to encode the knowledge of an expert, the expert system desig-
ner must have a clear view of the semantics of the symbols which the expert
uses. In this section we shall argue that such a view requires an understan-
ding of the functioning of symbol systems within a fundamentally abductive
problem solving process.

Symbol systems serve as instruments for the effective interaction of
experts and their problem-solving domain. They organize and codify the
domain phenomena as well as the expert’s understanding and response to
those phenomena. The semantic structure of the expert’s symbol system
cannot be divorced from the problem solving knowledge to which it gives
form. The three phases of problem solving, description, explanation, and
intervention, are inextricably linked together as three aspects of a single
problem solving practice. What weaves them together is an abductive
structure embodied in the semantic linkages of the expert’s symbol system.

We now flesh out these observations by showing that the semantics of
the expert’s language is defined by its relationship to description, explana-
tion, and action, and that this semantics carries the linkages between these
three phases of the problem solving process (see figure 5). We also observe
the abductive character of this problem solving in the dynamic alternation
of these phases.

Description

Action

Explanation

Figure 5: The abductive circle

Description:
Problem solving begins with a description of the problematic situation.
This description is more than a list of facts innocently gathered and as-
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sembled from the problem solving environment. The effective selection of
facts and the ordering of these facts into a coherent description presupposes
1) an ability to recognize in the situation features and constellations of
potential significance and 2) fluency in a set of domain specific descriptive
forms. Novices can rarely recognize and isolate the salient features of a
situation, and their descriptions are often full of omissions and irre-
levancies. This is of course why doctors and auto mechanics refuse to make
diagnoses on the basis of a layman’s description. Domain experts stand
indeed further above their less skilful colleagues in their ability to construct
descriptions which are at the same time both more concise and more
revealing.

Problem solving generally begins with an initial description of the pro-
blem solving situation. This description is then developed and elaborated
in conjunction with a process of inquiry. New information is acquired
through measurement, testing, interviewing, etc., information which is then
reintegrated into the situation description.

The acquisition and integration of new information has associated costs
in time and resources. This process thus requires focus and direction from
a goal or set of goals in order for the effort to efficiently converge. These
goals are formed by the expert’s response to the current state of the de-
scription, its completeness or incompleteness, its coherent or anomalous
character, the categorizations and explanations which it suggests. At various
stages of the inquiry, the expert will adopt an hypothesis or set of hypothe-
ses. These then direct the course of inquiry until they are refuted or re-
placed by more probable hypotheses. This means that the elaboration of
the description is an ongoing, abductive process organized and informed
by the expert’s domain knowledge.

Description and explanation do not represent distinct and separate
processes but rather locations in a continuum. Description evolves, in the
process of inquiry and elaboration, in the direction of explanation. At each
stage in the process the description projects, through its structure and
content, a certain presence or absence of intelligible form. The description
may initially be sketchy and incomplete, too inchoate to allow for any
explanation. Later it may contain aspects which are coherent and which
suggest a spectrum of possible explanations, and others which are anomal-
ous and which drive inquiry further. Finally, if the inquiry is successful and
the problem situation matches closely one of prototypical or well under-
stood cases, then the description may be so lucid and self-explanatory as

—tmmquine&n];uhe_mostﬁperﬁmcio%explanatinniheqamgrﬁss,ofihe%"

problem solving process thus involves an adaptive interaction between
descriptive and explanatory forms, an interaction mediated in part by the
semantic relations implicit in the expert’s symbol system.
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Explanation:

Explanation of a situation is relative to description of the situation: how
we specify what is to be explained partly determines how it is to be explain-
ed. The relationship is, however, bidirectional. Explanation may locate key
features of the situation which determine others; this may in turn lead us
to change the organization and structure of our description.

Classical theories of explanation have tended to focus on law and causali-
ty. Hempel (1965), for example, elaborates a view of scientific explanation
as a process of connecting the particular situation to the operation of
general or universal laws of nature. The general form of explanation is thus
that of subsuming the particular under the universal. (There is a rough
correspondence between this and the proof tree model of explanation in
current expert systems: The rules involved in the proof correspond to the
"universal laws".)

Currently work is underway in AL to develop a formal model of abduc-
tive explanation. One account is that of Levesque (1989) who proposes a
definition of abductive explanation in terms of a (mathematical) relation
called EXPLAIN. The sense of this relation is given by the axiom:

EXPLAIN.((P -~ Q), Q, P)

which is interpreted as follows: If, in a given epistemic state e, P together
with the background beliefs of that state entails Q, then P is one explana-
tion for Q relative to e. We have shown (Stern and Luger, 1991) that
entailment-based accounts of explanation fail to capture the semantic
characteristics of good explanations, e.g., edification (non-triviality), clarity
and coherence.

To this we add that the characterization of explanation must be domain-
and context-specific. Expert explanations take many different forms (not
merely subsumption of the particular under a universal rule). The defining
feature that all these differing forms have in common is that they serve a
purpose in the expert’s problem solving process, providing direction for
further inquiry or problem solving intervention.

Abduction, hypothesis, and intervention.

Problem solving under limitations of time and/or resources requires a
special form of reasoning and decision making. The expert must navigate
in conditions of uncertainty, using a method of informed hypothesis to find

—am expeditious path to a solution. While uncertainty is anm unavoidable ————
concomitant of the journey, it must be minimized by the time the des-
tination is reached.
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The formulation of an hypothesis serves either as a means to focus the
course of inquiry or as a prelude to action. In both cases, the hypothesis
stands between the problem description, on the one hand, and a decision
or commitment on the other. The hypothesis functions as an explanation
of currently known facts and at the same time as the ground of a commit-
ment either i) to the verifiability of certain new facts or ii) to the success
of a certain form of intervention. In both cases, the hypothesis represents
the abductive gathering of known and unknown, of past and future.

Hypothesis formation relies both on a body of theory and a body of
experience. While the theory provides the descriptive terms and linkages
which comprise the fabric of the explanation, experience provides a set of
successfully handled or well-explained cases which schematize thé applica-
tion of the theory. Often the formulation will begin with the postulation of
a relationship between the current instance and some previous instance(s),

a set of correspondences and differences which locate the current instance
in a space of paradigmatic cases.

The case-based hypothesis is then elaborated through a mapping process,
where the domain theory together with these correspondences are used to
extract testable consequences or a tentative course of action. It is generally 2
here that the expert’s skill is most sharply distinguished from that of the
newly schooled novice. While the novice may possess the same abstract
level of theoretical understanding, the expert’s richer background of inter-
preted experience allows her to identify suggestive patterns in the domain
phenomena and to formulate hypotheses which focus problem solving more
quickly and effectively.

The expert’s problem solving is organized to serve two purposes: to
provide effective problem resolution and also to provide significant feed-
back about the problem solving situation. If the intervention is unsuccessful,
the results of the intervention should provide as much information as
possible about what didn’t work and why. The interpreted results should
be able to inform the direction of continued efforts.

Even if the intervention is successful, the results of the intervention must
still be evaluated. The expert must know that it is successful and have a
clear understanding of why it worked. The expert must have confidence in
the solution and a well defined set of expectations about when it will work
again in the future. The reason for this is that the expert’s problem solving
is not, in general a "single shot" process; it is part of an ongoing evolving
practice. To achieve the capacity for adaptability and growth, the expert’s c

—mmmtbvmgmze&fmm%onﬁewﬁa}ogﬁif
cally. This involves a semiotic structure in which the outcome of the inter-
action is itself a message, a carrier of useful information which can be
folded back into the expert’s problem solving representations.
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2.2 Abductive problem solving: an example

In this section we present an example of expert problem solving derived
from one of our current projects. We are designing a "discrete semiconduc-
tor failure analysis expert system" for Sandia National Laboratories. "Dis-
crete semiconductor” here refers to transistors and diodes as opposed to
integrated circuits.

Failure analysis, in this case, is generally performed on a device with
which the expert is already familiar. Either he or someone in his work team
was involved in drafting a procurement specification for the device and in
evaluating original manufacturer’s samples. Based on this initial understan-
ding of the device, the expert is responsible for monitoring the device
through its life cycle. This means assisting in the handling of problems in
the manufacturing process, in incoming-receiving inspection, circuit as-
sembly, and finally, in the field.

Detecting the source of failures requires demanding detective work.
There are several different potential problem sources. These include:

i) Problems in the manufacturing process, such as volatile or particle con-
tamination, improper bonding or welding, improper or inconsistent silicon
doping, or a cracked silicon chip.

if) Device level design problems, such as adjacent materials which are chemi-
cally reactive or bonded materials with different coefficients of expansion,

iii} Screening problems’, such as a screen that is not tight enough or does not
cover the right characteristics.

iv) Handling problems, such as damage due to faulty test equipment, rough
handling during installation, or electrostatic damage.

V) Circuit problems, such as the circuit damages the device through over-
exercise or improper temperature control.

vi) Circuit level design problems: the device is the wrong part for the job.

A typical problem solving process proceeds through the following series of
stages:

i) Evaluation of failure background, including circumstances of the failure
and past history of the device.

it) Failure verification by establishing that the device indeed failed in the way
that was reported.

iii) External physical analysis: a precise description of the device’s external
physical and electrical characteristics.

Vi) Internal physical analysis. This usually involves opening up the package and

examining the device with optical and electron microscopes or performing
chemical analyses; it is generally a destructive process.

V) Causal analysis that determines the source of defects or damage at the
physical level.

vi) Developing a fix or cure for the problem.
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The first phase in the expert’s problem solving is to assemble and assess
background information. Where did the device fail? After what period of
testing or use? How many devices failed? Are the circumstances of failure
similar to some previous event for the same device? For a similar device?
Do the circumstances of failure suggest a pattern, e.g.,, the manufacturer
has a history of contamination problems, or many low power devices have
been failing after testing on a certain piece of test equipment?

By the time failure analysis reaches the stage of electrical testing, it has
already become, to a great extent, data-driven. Because this testing is time
consuming, and more importantly, because it can cause further damage to
the device, thus destroying the evidence, the selection and ordering of
electrical tests requires a good deal of skill. The choice of test parameters
as well as voltage and current levels is determined, for each test, by the
results of previous tests and the expert’s reading of their contextual sig-
nificance. The device’s electrical characteristics are interpreted asindicators
of damage or defect at the level of physical structure. The tests are or-
chestrated so as to narrow or constrain the range of hypothesis about
physical structure while at the same time preserving the possibility of
pursuing alternative hypotheses should the current ones fail.

Not until progress has been made in identifying a strongly suggestive
pattern of evidence at the external electrical and behavioural level is
physical analysis undertaken. This is because i) physical analysis is irrevers-
ibly destructive, and ii) because the required physical evidence is commonly
located at the microscopic level and hence cannot be found without first
knowing where to look.

The final step in failure analysis is the identification of the cause and
offering a cure. These often proceed hand-in-hand. Conceptually, of course,
the identification of cause should determine the selection of cure, but in
actual practice it is often the case that a tentative form of problem inter-
vention is undertaken partly to verify the correctness of the causal analysis.

For example, if a small number of failures of a certain component begin
to appear after some period of time, it might be hypothesized that a few
marginal devices which barely passed an original screen eventually
degraded through the rigors of use. The cure, on this analysis, would be to
tighten the requirements of the screening procedure so that marginal
devices are screened out. This "cure” has the virtue of simplicity and
relative low cost. Were this kind of "cure" to fail, moreover, the failure itself
would be revealing, It would indicate that the failures are "latent", meaning

thapapparemlyfgeoddevice&experieneejsignificanpdegrad&ti@nfoverftim3.7r-i

Since "latent failures" have a restricted range of possible causes, this
information would be quite useful.

T T
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2.3 Reflections and analysis

One of the striking features of the analytical process described above is
the progression of stages (figure 6).

In the initial failure report what is described are gross physical or elec-
trical behaviours. Extensive testing then gives a more and more detailed
and precise account of the device’s external physical and electrical charac-
teristics. This characterization not only illuminates the earlier failure event
but also serves as a road map to the hidden landscape of physical structure.
Internal physical analysis then encounters that landscape firsthand, dis-
covering the structural causes of these physical and electrical characteristics.

Levels of Description

Initial failure Rough description of failure
report event, e.g. intermittent base emitter
open, degraded BV

External physical | Precise characterization of electrical
and electrical charateristics, package intergrity,
analysis residual gas analysis

Internal physical Delid package and examine under
analysis electron microscope; perform
chemical analysis

Causal failure Use physical indications to decipher
analysis environmental causation

Figure 6: Progression of stages as a feature of the analytical process

_ Finally, causal analysis uses indications from the level of physical mor-
phology to track down the sources of these physical defects, whether these
factors be traceable to design flaws, manufacturing problems, mishandling,
or other environmental influence.

The structure of inquiry organizing this progression is thus a semiotic
spiral (Figure 7) in which each level of description illuminates its predeces-

——sor while at the same time anticipating and pointing to-its own-explanation————————————

at the next higher level.

The implicit reference of level to level is registered in many of the
descriptive terms which are used. A term like "overstress", for example,
refers both to an excessive voltage or current applied to a device and also
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to the pattern of distress that such an excessive voltage or current can

produce.

INITIAL
FAILURE REPORT

N

EXTERNAL ELECTRICAL
AND PHYSICAL ANALYSIS

A

INTERNAL PHYSICAL
ANALYSIS

4

ANALYSIS

CAUSAL FAILURE

Figure 7: The abductive spiral

This pattern can be a recognizable physical indicator of a past event.
Thus the expert talks about a "signs of overstress" or "overstress damage"
visible under a microscope. "Volatile leakage" is another example of a
physical indicator. "Volatile leakage" refers to a leakage characteristic of
reverse breakdown voltage which improves with elevated temperature.

Symbol: “volatile leakage”

Physical pattern

encodes

Sign

Indicates

Changing leakage in
reverse breakdown

Volatile contaminants
such as water or

voltage characteric

organic solvents

Figure 8: Relation between symbol, sign and physical reality
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"Volatile leakage" provides clear indication of the presence of volatile
contaminants such as water or organic solvents (Figure 8).

Terms such "soft knee", "intermittent open", "walking breakdown", etc.,
also encode the semiotic relationship between a physical pattern (generally
on a laboratory instrument) and the causal factors to which that pattern
points. It is in this sense that the expert’s symbol system embeds his pro-
blem solving knowledge. Although we do not have the time to expand the
observation here, we further note that the expert’s instrumentation has been
designed to perspicuously display those patterns deemed indicative or
significant. In this sense, the expert’s explicit linguistic representations are
themselves comprised within a larger system of signs which organizes the
expert’s problem solving environment,

3. Areas of research and growth

As a result of the entry of expert system technology into the commercial
marketplace, it has undergone an evolution that has moved it well beyond
the goals of its original designers. Its epistemology has also outgrown its
rationalist foundations (Luger and Stern, 1990)

In spite of its successes, there remain some fundamental flaws and limita-
tions in expert system technology. We see this in its brittleness and its lack
of ability to provide deeper justification than that of proof trees and rule
stacks. We also note the absence of a rule/model symbiosis that would
allow the system to employ either technology when appropriate. Finally,
it is still well beyond the ability of current expert systems to improve
performance through accumulated experience. We would like to see some
limited learning ability in the next generation of expert systems, at the very
least the integration of successful cases into its knowledge and practice.

Early efforts in A.I were biased towards deductive inference. Limitations
of deduction in areas such as diagnosis and theory formation have led to
increased interest in abductive inference. Our description of the "abductive
circle" provides the basis for a more realistic understanding of abductive
problem-solving and the symbol systems which support it. In our ongoing
work (Stern and Luger, 1991) we are developing a sign-based account of
abductive explanation which offers significant advantages over the current
entailment-based account.
7’111§:Jf,seanch£hallengeuheadﬁnecessitafe&afr—e-eva%u&ﬁeﬁﬁthefpﬁ%f
temological foundations of expert system problem solving. The epistemolo- L
gies prevalent in AL, based on formal logic and Tarskian semantics, are
characterized by a self-imposed poverty which limits their ability to grasp
the implications of current practice. Our analysis of abductive problem
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solving comes closer to a structure for understanding current expert system
tools and practices. Our analysis, coupled with some of the techniques now
emerging from AL research (Luger and Stubblefield, 1992), offer the
promise for understanding and creating more semiotically mature com-
putational systems.

Note

1. It is not cost effective to eliminate variability in the semiconductor manufacturing
process; it is more cost effective to screen out the small percentage of a manu-
facturing lot which is lower quality.
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